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Abstract

The electroelastic response of a penny-shaped crack in a piezoelectric cylindrical fiber embedded in an elastic matrix

is investigated in this study. Fourier and Hankel transforms are used to reduce the problem to the solution of a pair of

dual integral equations. They are then reduced to a Fredholm integral equation of the second kind. Numerical values on

the stress intensity factor, energy release rate and energy density factor for piezoelectric composites are obtained to

show the influence of applied electric fields.
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1. Introduction

Mechanical reliability and durability of polymer/piezoelectric ceramic composites with 1–3 connectivity

are important considerations in the design of hydrophones and transducers. In recent years, significant

efforts had been made to the study of electroelastic fields concentrations and fracture behavior of 1–3 pi-

ezoelectric composites (Shindo et al., 2002a,b). In the theoretical studies of the piezoelectric crack problems,
the electrical boundary condition imposed across the crack surface remains a debating issue. There are two

commonly used electrical boundary conditions. Pak (1990) has assumed crack face to be free of surface

charge (the so-called condition of impermeability or impermeable condition) while Shindo et al. (1990,

1997) have discarded the impermeability approximation. Recently, Narita and Shindo (2001) obtained a

crack growth rate equation of a plane strain slit-like crack parallel to the edges of a narrow piezoelectric

ceramic body under Mode I loading. The results indicated that under applied uniform displacement,

positive electrical fields (electrical fields in poling direction) impede crack propagation while negative

electrical fields (electrical fields applied opposite to the poling direction) aid crack propagation. To test the
validity of such predictions, the single-edge precracked-beam tests and corresponding finite element ana-

lyses were performed on P-7 piezoelectric ceramics (Shindo et al., 2002c). For center-cracked piezoelectric
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specimens under three-point bending condition, total potential and mechanical strain energy release rates

based on the exact boundary condition for applied displacement are in agreement with the experimental

results. However, the total and mechanical energy release rates based on the impermeable assumption are

not in agreement with the experimental results. In the case of applied load, the total and mechanical energy
release rates based on the exact crack model are also in agreement with the experimental results of Park and

Sun (1995). Their experimental results showed that positive electric fields decreased fracture load, whereas

negative electric fields increased it. The fracture mechanism is due to the inducement of stress resulting from

mechanical deformation by the applied electric field. Based on the total and mechanical energy release rates

for the impermeable model under applied force, we cannot explain the test results. To estimate the electric

fracture toughness, indentation fracture tests were also made on P-7 under combined mechanical and

electrical loads (Shindo et al., 2001). The exact crack model provided predictions of fracture properties due

to electromechanical loading and better qualitative agreement with the experimental results. Schneider and
Heyer (1999) also used the indentation method to determine the crack growth of ferroelectric barium ti-

tanate and showed that it is physically questionable to apply the impermeable crack model. In recent works,

the energy density fracture criterion (Sih, 1991) was applied to determine the piezoelectric crack growth

segments for conditions of positive, negative and zero electric field based on the impermeable assumption

(Sih and Zuo, 2000).

This paper considers the electroelastic problem of a penny-shaped crack in a piezoelectric circular cyl-

inder embedded in an elastic matrix under Mode I loading. The method of solution involves the use of

Fourier and Hankel transforms to reduce the mixed boundary value problem to a pair of dual integral
equations. The solution is then given in terms of a Fredholm integral equation of the second kind. The

stress intensity factor, energy release rate and energy density factor are determined and numerical results

are shown graphically to demonstrate the influence of applied electric fields.
2. Problem statement and basic equations

A piezoelectric fiber of infinite length with radius b in Fig. 1 is embedded in an elastic matrix having
Young�s modulus E and Poisson�s ratio m. With the reference to a cylindrical coordinate system ðr; h; zÞ, the
longitudinal axis of the fiber coincides with the z-axis while the center of a penny-shaped crack of radius a is
directed through the z-axis. The piezoelectric composite is subjected to an external strain in the z-direction,
and the fiber poled in the z-direction is subjected to the normal stress, rzz ¼ r1, and electric field, Ez ¼ E1.

Quantities in the neighboring elastic matrix will subsequently be designated by the superscript �E�.
The constitutive equations can be written as
rrr ¼ c11ur;r þ c12
ur
r
þ c13uz;z � e31Ez

rhh ¼ c12ur;r þ c11
ur
r
þ c13uz;z � e31Ez

rzz ¼ c13ur;r þ c13
ur
r
þ c33uz;z � e33Ez

rzr ¼ c44ður;z þ uz;rÞ � e15Er

9>>>>>>>>>=
>>>>>>>>>;

ð1Þ

Dr ¼ e15ður;z þ uz;rÞ þ �11Er

Dz ¼ e31 ur;r þ
ur
r

� �
þ e33uz;z þ �33Ez

9=
; ð2Þ



Fig. 1. Geometry of a piezoelectric cylindrical fiber with a penny-shaped crack embedded in a matrix.
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rE
rr ¼ ð2lþ kÞuEr;r þ k

uEr
r
þ uEz;z

� �

rE
hh ¼ kuEr;r þ ð2lþ kÞ u

E
r

r
þ kuEz;z

rE
zz ¼ k uEr;r þ

uEr
r

� �
þ ð2lþ kÞuEz;z

rE
zr ¼ lðuEr;z þ uEz;rÞ

9>>>>>>>>>>=
>>>>>>>>>>;

ð3Þ
In Eqs. (1)–(3), rrr, rhh, rzz, rzr, rE
rr, r

E
hh, r

E
zz, r

E
zr are the components of stress tensor; Dr and Dz the com-

ponents of electric displacement vector; ur, uz, uEr and uEz the components of displacement vectors; Er and Ez

the components of electric field vector; c11, c12, c13, c33, c44 the elastic moduli measured in a constant electric

field; �11, �33 the dielectric permittivities measured at constant strain; e15, e31, e33 the piezoelectric constants;
k ¼ 2Gm=ð1� 2mÞ and l ¼ G the Lam�ee constants of the elastic matrix; and G ¼ E=2ð1þ mÞ the modulus of

rigidity. A comma implies partial differentiation with respect to the coordinates. The electric field com-

ponents may be written in terms of an electric potential /ðr; zÞ by

Er ¼ �/;r; Ez ¼ �/;z ð4Þ
The governing equations are obtained as
c11 ur;rr þ
ur;r
r

� ur
r2

� �
þ c44ur;zz þ ðc13 þ c44Þuz;rz þ ðe31 þ e15Þ/;rz ¼ 0

ðc13 þ c44Þ ur;rz þ
ur;z
r

� �
þ c33uz;zz þ c44 uz;rr þ

uz;r
r

� �
þ e15 /;rr þ

/;r

r

� �
þ e33/;zz ¼ 0

9>=
>; ð5Þ

ðe31 þ e15Þ ur;rz þ
ur;z
r

� �
þ e15 uz;rr þ

uz;r
r

� �
þ e33uz;zz � �11 /;rr þ

/;r

r

� �
� �33/;zz ¼ 0 ð6Þ
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ð2lþ kÞ uEr;rr þ
uEr;r
r

� uEr
r2

� �
þ luEr;zz þ ðlþ kÞuEz;rz ¼ 0

ðlþ kÞ uEr;rz þ
uEr;z
r

� �
þ ð2lþ kÞuEz;zz þ l uEz;rr þ

uEz;r
r

� �
¼ 0

9>>>=
>>>;

ð7Þ
In a vacuum, the constitutive equations (2) and the governing equation (6) become
Dr ¼ �0Er; Dz ¼ �0Ez ð8Þ

/;rr þ
/;r

r
þ /;zz ¼ 0 ð9Þ
where �0 is the electric permittivity of the vacuum.

Referring to the semi-infinite region zP 0, 06 r < 1, 06 h6 2p, the boundary conditions can be ex-

pressed in the form
rzrðr; 0Þ ¼ 0 ð06 r6 bÞ
rE
zrðr; 0Þ ¼ 0 ðb6 r61Þ

ð10Þ

rzzðr; 0Þ ¼ 0 ð06 r < aÞ
uzðr; 0Þ ¼ 0 ða6 r6 bÞ
uEz ðr; 0Þ ¼ 0 ðb6 r61Þ

ð11Þ

Erðr; 0Þ ¼ Ec
rðr; 0Þ ð06 r < aÞ

/ðr; 0Þ ¼ 0 ða6 r6 bÞ
ð12Þ

Dzðr; 0Þ ¼ Dc
zðr; 0Þ ð06 r < aÞ ð13Þ

urðb; zÞ ¼ uEr ðb; zÞ ð14Þ

uzðb; zÞ ¼ uEz ðb; zÞ ð15Þ

rrrðb; zÞ ¼ rE
rrðb; zÞ ð16Þ

rrzðb; zÞ ¼ rE
rzðb; zÞ ð17Þ

Drðb; zÞ ¼ 0 ð18Þ

rzzðr; zÞ ¼ r1; Ezðr; zÞ ¼ E1 ð06 r6 b; z ! 1Þ
rE
zzðr; zÞ ¼ rE

1 ðb6 r < 1; z ! 1Þ
ð19Þ
where
rE
1 ¼ c1r1 þ ðc1e1 � e2ÞE1

c1 ¼
ð2lþ kÞ½2ðlþ kÞ � c11 � c12� � 2kðk� c13Þ
c33½2ðlþ kÞ � c11 � c12� � 2c13ðk� c13Þ

e1 ¼ e33 þ
2c13e31

2ðlþ kÞ � c11 � c12

e2 ¼
2ke31

2ðlþ kÞ � c11 � c12

ð20Þ
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and the superscript �c� stands for the electric field quantity in the void inside the crack. The far-field normal

stress r1 is expressed as
r1 ¼ r0 � e2E1 ð21Þ

Note that r0 is a uniform normal stress for a closed-circuit condition with the potential forced to remain

zero (grounded).
3. Solution procedure

Assume that the solutions ur, uz, /, uEr and uEz are of the form
urðr; zÞ ¼
2

p

X3
j¼1

Z 1

0

½ajAjðaÞ expð�cjazÞJ1ðarÞ þ a0jBjðaÞI1ðc0jarÞ cosðazÞ�daþ a1r

uzðr; zÞ ¼
2

p

X3
j¼1

Z 1

0

1

cj
AjðaÞ expð

"
� cjazÞJ0ðarÞ þ

1

c0j
BjðaÞI0ðc0jarÞ sinðazÞ

#
daþ b1z

ð22Þ

/ðr; zÞ ¼ 2

p

X3
j¼1

Z 1

0

"
� bj

cj
AjðaÞ expð � cjazÞJ0ðarÞ þ

b0j
c0j
BjðaÞI0ðc0jarÞ sinðazÞ

#
da� c1z ð23Þ

uEr ðr; zÞ ¼
2

p

Z 1

0

f�K1ðarÞB4ðaÞ þ ½4ð1� mÞK2ðarÞ þ arK0ðarÞ�B5ðaÞg cosðazÞdaþ a1bþ d1ðr � bÞ

uEz ðr; zÞ ¼
2

p

Z 1

0

½�K0ðarÞB4ðaÞ þ arK1ðarÞB5ðaÞ� sinðazÞdaþ e1z ð24Þ
where AjðaÞ ðj ¼ 1; 2; 3Þ and BjðaÞ ðj ¼ 1; . . . ; 5Þ are the unknowns to be solved, J0ð Þ and J1ð Þ are the zero
and first order Bessel functions of the first kind, I0ð Þ and I1ð Þ are the zero and first order modified Bessel

functions of the first kind, and K0ð Þ, K1ð Þ and K2ð Þ are the zero, first and second order modified Bessel

functions of the second kind, respectively. The real constants a1, b1, c1, d1 and e1 will be determined

from the far-field loading conditions, and c2j , aj, bj, c
02
j , a

0
j, b

0
j ðj ¼ 1; 2; 3Þ are given in Appendix A. Ap-

plication of the Fourier transform to Eq. (9) yields
/c ¼ 2

p

Z 1

0

CðaÞ sinhðazÞJ0ðarÞda ð06 x < aÞ ð25Þ
where CðaÞ is also unknown.

By applying the far-field loading conditions, the constants a1, b1, c1, d1 and e1 are evaluated as
a1 ¼ d1 ¼ ðc13 � kÞr1 þ ½ðc13 � kÞe33 � c33e31�E1

2c13ðc13 � kÞ � c33ðc11 þ c12 � 2k� 2lÞ

b1 ¼ e1 ¼ �ðc11 þ c12 � 2k� 2lÞr1 þ ½2c13e31 � e33ðc11 þ c12 � 2k� 2lÞ�E1

2c13ðc13 � kÞ � c33ðc11 þ c12 � 2k� 2lÞ
c1 ¼ E1

ð26Þ
The boundary conditions of Eqs. (10) and (12) lead to the following relations between unknown functions:
f1
c
A1ðaÞ þ

f2
c
A2ðaÞ þ

f3
c
A3ðaÞ ¼ 0 ð27Þ
1 2 3
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b1
c1

A1ðaÞ þ
b2
c2

A2ðaÞ þ
b3
c3

A3ðaÞ ¼ 0 ð28Þ
where
fj ¼ c44ðajc2j þ 1Þ � e15bj ðj ¼ 1; 2; 3Þ ð29Þ
Application of the mixed boundary conditions in Eqs. (11) gives rise to a pair of dual integral equations:
Z 1

0

aFDðaÞJ0ðarÞda�
X3
j¼1

Z 1

0

agjcjBjðaÞI0ðc0jarÞda ¼ � p
2
r1 ð06 r < aÞ

Z 1

0

DðaÞJ0ðarÞda ¼ 0 ða6 r6 bÞ
ð30Þ
where
DðaÞ ¼ A1ðaÞ
d1

¼ A2ðaÞ
d2

¼ A3ðaÞ
d3

ð31Þ

F ¼
X3
j¼1

djgj ð32Þ

d1 ¼ c1ðb2f3 � b3f2Þ; d2 ¼ c2ðb3f1 � b1f3Þ; d3 ¼ c3ðb1f2 � b2f1Þ ð33Þ

gj ¼ c13aj � c33 þ e33bj ðj ¼ 1; 2; 3Þ ð34Þ
The solution of a pair of dual integral equations (30) may be obtained by using a new function UðnÞ and the

result is
DðaÞ ¼ �r1

F
a2
Z 1

0

UðnÞ sinðaanÞdn ð35Þ
The function UðnÞ is governed by the following Fredholm integral equation of the second kind:
UðnÞ þ
Z 1

0

UðgÞKðn; gÞdg ¼ n ð36Þ
The kernel function Kðn; gÞ is
Kðn; gÞ ¼ 4

p2F

X3
j¼1

gjc2j

Z 1

0

Ejða; gÞ sinhðc0janÞda ð37Þ
where Ejða; gÞ is given in Appendix B.

The stress intensity factor k1 for the exact crack model is obtained as
k1 ¼ lim
r!aþ

f2ðr � aÞg1=2rzzðr; 0Þ ¼
2

p
r1

ffiffiffi
a

p
Uð1Þ ð38Þ
The electric displacement intensity factor kD is also given by
kD ¼ lim
r!aþ

f2ðr � aÞg1=2Dzðr; 0Þ ¼
1

F

X3
j¼1

hjdj

 !
k1 ð39Þ
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where
hj ¼ e31aj þ e33 � �33bj ð40Þ
The stress and electric displacement intensity factors for the impermeable crack model are discussed in

Appendix C.

By using the concept of crack closure energy and the asymptotic behavior of stresses, displacements,

electric displacement and electric potential near the crack border, the total potential energy release rate G
may be expressed as
G ¼ lim
Da!0

1

Da

Z Da

0

frzzðr1ÞuzðDa� r1Þ þ rzrðr1ÞurðDa� r1Þ þ Dzðr1Þ/ðDa� r1Þgdr1

¼ � p
2F 2

F
X3
j¼1

dj
cj

 
�
X3
j¼1

hjdj
X3
j¼1

bjdj
cj

!
k21 ð41Þ
where r1 ¼ fðr � aÞ2 þ z2g1=2 and Da is the assumed crack extension. The mechanical strain energy release

rate GM includes only mechanical energy released as the crack extends and is given by
GM ¼ lim
Da!0

1

Da

Z Da

0

frzzðr1ÞuzðDa� r1Þ þ rzrðr1ÞurðDa� r1Þgdr1 ¼ � p
2F

X3
j¼1

dj
cj

 !
k21 ð42Þ
The total potential and mechanical strain energy release rates for the impermeable crack model are also

given in Appendix C.

The energy density is expressible in the form
dW ¼ 1

2
ðrrrerr þ rzrezr þ rrzerz þ rzzezzÞ þ

1

2
ðDrEr þ DzEzÞ

� �
dV ð43Þ
and hence
S ¼ r1
dW
dV

¼ ðaM þ aEÞk21 ð44Þ
where (

aM ¼ 1

8F 2

X3
j¼1

mjdjRc
jðh1Þ

X3
j¼1

ajdjRc
jðh1Þ þ

X3
j¼1

fjdj
cj

Rs
jðh1Þ

X3
j¼1

djðajc2j þ 1Þ
cj

Rs
jðh1Þ

�
X3
j¼1

gjdjRc
jðh1Þ

X3
j¼1

djRc
jðh1Þ

)
ð45Þ

aE ¼ 1

8F 2

X3
j¼1

njdj
cj

Rs
jðh1Þ

X3
j¼1

bjdj
cj

Rs
jðh1Þ

(
�
X3
j¼1

hjdjRc
jðh1Þ

X3
j¼1

bjdjRc
jðh1Þ

)
ð46Þ
and
Rc
jðh1Þ ¼

ðcos2 h1 þ c2j sin
2 h1Þ1=2 þ cos h1

cos2 h1 þ c2j sin
2 h1

( )1=2

Rs
jðh1Þ ¼ �

ðcos2 h1 þ c2j sin
2 h1Þ1=2 � cos h1

cos2 h1 þ c2j sin
2 h1

( )1=2
ð47Þ

h1 ¼ tan�1 z
r � a

� �
ð48Þ
The energy density factor for the impermeable crack model is given in Appendix C.
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Rapid crack growth occurs when the minimum energy density factor Smin reaches a critical value:
Table

Mater

P-7
Smin ¼ Sc ð49Þ
Each increment of stable crack growth r11; r12; . . . ; r1j; . . . ; r1c up to rapid crack propagation is determined

by the condition (Sih, 1991)
S1
r11

¼ S2
r12

¼ � � � ¼ Sj
r1j

¼ � � � ¼ Sc
r1c

ð50Þ
where r1c represents the last ligament of slow crack growth just prior to the onset of rapid fracture and Sc
governs the onset of rapid crack propagation. The growth condition of Eq. (50) can be written as
Sj�
r1j�

¼ Sj0
r1j0

¼ Sjþ
r1jþ

ð51Þ
where the subscripts ), 0, + denote, respectively, the situations for negative, zero and positive electric
fields.
4. Numerical results and discussion

The determination of the stress intensity factor, energy release rate and energy density factor for the

exact crack model requires the solution of the function of UðnÞ. The solution of the Fredholm integral

equation of the second kind (36) governing UðnÞ has been computed numerically by the use of Gaussian

quadrature formulas. Once this is done, k1, G, GM and S can be found from Eqs. (38), (41), (42) and (44).

The simultaneous Fredholm integral equations of the second kind (C.4) were also solved numerically to
yield the values of the functions U1ð1Þ and U2ð1Þ. These values were then inserted into Eqs. (C.2) and (C.3)

to determine the stress and electric displacement intensity factors for the impermeable crack model. The

energy release rate and energy density factor were calculated by using Eqs. (C.12), (C.13) and (C.15)–

(C.17). The piezoelectric cylinder is made of commercially available piezoceramic P-7, and the elastic matrix

is epoxy. The material properties of P-7 are listed in Table 1 (Shindo et al., 2000). The Young�s modulus

and Poisson�s ratio of epoxy are taken to be E ¼ 3:38 GPa and m ¼ 0:215.
Fig. 2 shows the normalized stress intensity factor pk1=2r0a1=2 of the exact and impermeable (approx-

imate) crack models as a function of the crack-radius to cylinder-radius ratio a=b for various values of the
normalized electric field e1E1=r0. The data are normalized by the stress intensity factor 2r0a1=2=p of an

infinite P-7 piezoelectric ceramic for E1 ¼ 0 V/m corresponding to the applied uniform displacement. For

comparison, the normalized stress intensity factor pk1=2r0a1=2 of a free surface finite P-7 piezoceramic

cylinder for the exact crack model under E1 ¼ 0 V/m is also included in the figure. An increase of a=b
causes an increase in the stress intensity factor. The stress intensity factor of the P-7-epoxy composite for

E1 ¼ 0 V/m remains smaller than that of the P-7 cylinder. When an electric field is applied, pk1=2r0a1=2

increases or decreases depending on the direction of the electric field. The stress intensity factor k1
normalized by 2r1a1=2=p corresponding to the applied uniform stress for the exact and impermeable
1

ial properties of a piezoelectric ceramic P-7

Elastic stiffnesses (·1010 N/m2) Piezoelectric coefficients (C/m2) Dielectric constants (·10�10 C/Vm)

c11 c33 c44 c13 e31 e33 e15 �11 �33

13.0 11.9 2.5 8.3 )10.3 14.7 13.5 171.0 186.0



Fig. 2. Stress intensity factor versus crack-radius to cylinder-radius ratio.
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crack models is independent of the normalized electric field e1E1=r1, and agrees with the pk1=2r0a1=2 for
E1 ¼ 0 V/m.

Fig. 3 shows the dependence of the total potential energy release rate G for the exact crack model under

applied displacement on e1E1=r0 for a=b ¼ 0:7, where the result has been normalized by the energy release

rate G0 of the infinite P-7 for E1 ¼ 0 V/m. For comparison, the mechanical strain energy release rate GM for

the exact crack model, total potential energy release rate GI and mechanical strain energy release rate GI
M

Fig. 3. Energy release rate versus electric field for applied displacement.
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for the impermeable crack model are also included in the figure. Comparing the results of G and GM, little

difference is observed (solid and dashed lines approximately overlap). The total energy release rate for the

exact crack model is lower for positive electric fields and higher for negative electric fields. On the other

hand, when a positive electric field is larger, a negative total energy release rate is produced for the im-
permeable crack model (alternate long and short dashed line). It has been pointed out by at least 15 or more

researchers previously (e.g. McMeeking, 1999; Chen and Lynch, 1999; Sih, 2002). The parameter for the

impermeable crack model has questionable physical significance. Fig. 4 shows the energy density factor Sj
(crack growth segment r1j) for the exact crack model for applied displacement under different e2E1=r0,

a=b ¼ 0:7 and h1 ¼ 0, where Sj (r1j) has been normalized by the energy density factor Sj0 (crack growth

segment r1j0) of the infinite P-7. Also shown are data for the impermeable crack model. The presence of

positive electric field E1 leads to a decrease in the energy density factor (crack growth segment) for the

exact crack model. In contrast, the energy density factor (crack growth segment) increases as the electric
field E1 increases in the negative direction. For the exact boundary condition, no substantial difference is

found in the effects of the electric fields on crack propagation based on the stress intensity factor, total

potential energy release rate, mechanical strain energy release rate and energy density factor. The energy

density factor for the impermeable crack model is higher for positive electric fields and lower for negative

electric fields. This is in contrast to the total potential and mechanical strain energy release rates for the

impermeable crack model. The presentation of data for the impermeable crack model causes confusion in

using the electrical boundary conditions on the crack face.

Fig. 5 displays the variation of G and GM for the exact crack model and GI and GI
M for the impermeable

crack model under applied uniform stress with various normalized electric field e1E1=r1 for a=b ¼ 0:7,
normalized by values of the infinite P-7 for E1 ¼ 0 V/m. The total potential and mechanical strain energy

release rates for the exact crack model are independent of the normalized electric field e1E1=r1 (solid and

dashed lines overlap). In the impermeable case, as the magnitude of e1E1=r1 is increased from zero, the

total potential energy release rate GI can be made either to increase or to decrease depending on the di-

rections of E1. But, once maximum GI is reached, further increase in E1 will monotonically decrease GI,
Fig. 4. Energy density factor versus electric field for applied displacement.



Fig. 5. Energy release rate versus electric field for applied stress.
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which is inconsistent with the experimental findings. The normalized energy density factor (crack growth

segment) for the exact crack model versus e1E1=r1 for a=b ¼ 0:7 is presented in Fig. 6, along with the

results for the impermeable crack model normalized by the corresponding values of energy density factor

(crack growth segment) of the infinite P-7 for E1 ¼ 0 V/m. The energy density factor (crack growth seg-

ment) for the exact crack model is also independent of e1E1=r1. In contrast, the energy density factor
Fig. 6. Energy density factor versus electric field for applied displacement.
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(crack growth segment) for the impermeable crack model increases or decreases depending on the mag-

nitude and direction of e1E1=r1. If the impermeable crack model is used, different criteria give different

results for the crack propagation in piezoelectric ceramics and composites.
5. Conclusions

The electroelastic problem of a penny-shaped crack in a piezoelectric cylindrical fiber embedded in an

elastic matrix has theoretically been analyzed. The results are expressed in terms of the stress intensity

factor, energy release rate and energy density factor. Fracture mechanics parameters such as stress intensity

factor, energy release rate and energy density factor increase and the effect of electrical loading becomes

significant as the cylinder-radius is decreased in comparison with the penny-shaped crack-radius. Fracture
mechanics parameters for the 1–3 piezoelectric composite are smaller than those for the piezoelectric cyl-

inder if the other parameters are held constant. The electrical loading dependence on the fracture mechanics

parameters is different for the two mechanical loading conditions (applied displacement and applied stress).

For the exact boundary condition, fracture mechanics parameters under uniform displacement are lower

for positive electric fields and higher for negative electric fields. For applied stress, fracture mechanics

parameters for the exact crack model are independent of the electric fields. No consensus is reached on the

fracture criteria for the impermeable crack model.
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Appendix A

c2j ðj ¼ 1; 2; 3Þ in Eqs. (22) and (23) are the roots of the following characteristic equation:
a0c6 þ b0c4 þ c0c2 þ d0 ¼ 0 ðA:1Þ
where
a0 ¼ c44ðc33�33 þ e233Þ
b0 ¼ �2c44e15e33 � c11e233 � c33ðc44�11 þ c11�33Þ þ �33ðc13 þ c44Þ2 þ 2e33ðc13 þ c44Þðe31 þ e15Þ

� c244�33 � c33ðe31 þ e15Þ2

c0 ¼ 2c11e15e33 þ c44e215 þ c11ðc33�11 þ c44�33Þ � �11ðc13 þ c44Þ2 � 2e15ðc13 þ c44Þðe31 þ e15Þ
þ c244�11 þ c44ðe31 þ e15Þ2

d0 ¼ �c11ðc44�11 þ e215Þ

ðA:2Þ
and, c02j , aj, bj, a
0
j, b

0
j (j ¼ 1; 2; 3) stand for the abbreviation
c02j ¼ 1

c2j
ðA:3Þ
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aj ¼
ðe31 þ e15Þðc33c2j � c44Þ � ðc13 þ c44Þðe33c2j � e15Þ
ðc44c2j � c11Þðe33c2j � e15Þ þ ðc13 þ c44Þðe31 þ e15Þc2j

ðA:4Þ

bj ¼
ðc44c2j � c11Þaj þ ðc13 þ c44Þ

e31 þ e15
ðA:5Þ

a0j ¼ �ajc2j ðA:6Þ

b0j ¼ �bj ðA:7Þ
Appendix B

The functions Ejða; gÞ ðj ¼ 1; 2; 3Þ in Eq. (37) are given by
Ejða; gÞ ¼
X5
i¼1

Diða; gÞQi;jðaÞ
jCj ðj ¼ 1; 2; 3Þ ðB:1Þ
where
C ¼

c1;1ðaÞ c1;2ðaÞ c1;3ðaÞ c1;4ðaÞ c1;5ðaÞ
c2;1ðaÞ c2;2ðaÞ c2;3ðaÞ c2;4ðaÞ c2;5ðaÞ
c3;1ðaÞ c3;2ðaÞ c3;3ðaÞ c3;4ðaÞ c3;5ðaÞ
c4;1ðaÞ c4;2ðaÞ c4;3ðaÞ c4;4ðaÞ c4;5ðaÞ
c5;1ðaÞ c5;2ðaÞ c5;3ðaÞ c5;4ðaÞ c5;5ðaÞ

2
66664

3
77775 ðB:2Þ

c1;jðaÞ ¼ a0jI1ðc0jab=aÞ
c2;jðaÞ ¼ cjI0ðc0jab=aÞ

c3;jðaÞ ¼ �mjcjaI0ðc0jab=aÞ þ
b
a
ðc12 � c11ÞI1ðc0jab=aÞ ðj ¼ 1; 2; 3Þ

c4;jðaÞ ¼ �fjI1ðc0jab=aÞ
c5;jðaÞ ¼ �njI1ðc0jab=aÞ

ðB:3Þ

c1;4ðaÞ ¼ K1ðab=aÞ
c2;4ðaÞ ¼ K0ðab=aÞ

c3;4ðaÞ ¼ �2l aK0ðab=aÞ
�

þ b
a
K1ðab=aÞ

	

c4;4ðaÞ ¼ 2lK1ðab=aÞ
c5;4ðaÞ ¼ 0

ðB:4Þ
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c1;5ðaÞ ¼ �4ð1� mÞ K0ðab=aÞ
�

þ 2a
ab

K1ðab=aÞ
	
þ ab

a
K1ðab=aÞ

c2;5ðaÞ ¼ � ab
a
K0ðab=aÞ

c3;5ðaÞ ¼ 2l
b
a

4

��
� 4mþ b2a2

a2

�
K1ðab=aÞ þ ð3� 2mÞ ab

a
K1ðab=aÞ

	

c4;5ðaÞ ¼ 2l ð2
�

� 2mÞK1ðab=aÞ þ
ab
a
K0ðab=aÞ

	
c5;5ðaÞ ¼ 0

ðB:5Þ

D1ða; gÞ ¼
X3
j¼1

ajdj
cj

K1ðc0jab=aÞ sinhðc0jagÞ

D2ða; gÞ ¼
X3
j¼1

dj
c2j

"
� mja

cj
K0ðc0jab=aÞ þ ðc12 � c11Þ

aja
b

K0ðc0jab=aÞ
#
sinhðc0jagÞ

D3ða; gÞ ¼
X3
j¼1

dj
cj
K0ðc0jab=aÞ sinhðc0jagÞ

D4ða; gÞ ¼
X3
j¼1

fjdj
c3j

K1ðc0jab=aÞ sinhðc0jagÞ

D5ða; gÞ ¼
X3
j¼1

njdj
cj

K1ðc0jab=aÞ sinhðc0jagÞ

ðB:6Þ

mj ¼ c11aj � c13 þ e31bj

nj ¼ e15ðajc2j þ 1Þ þ �11bj ðj ¼ 1; 2; 3Þ
ðB:7Þ
and jCj is the determinant of the square matrix C and Qi;jðaÞ are the cofactors of the elements ci;jðaÞ.
Appendix C

The impermeable boundary condition becomes
Dzðr; 0Þ ¼ 0 ð06 r < aÞ
/ðr; 0Þ ¼ 0 ða6 r6 bÞ

ðC:1Þ
The boundary condition of Eq. (10) leads to Eq. (27). Making use of mixed boundary conditions of Eqs.

(11) and (C.1), two simultaneous dual integral equations are obtained.

The stress intensity factor k1 and electric displacement intensity factor kD for the impermeable crack

model are obtained as
k1 ¼
2

p
r1

ffiffiffi
a

p
fU1ð1Þ þ U2ð1Þg ðC:2Þ

kD ¼ 2

p
r1

ffiffiffi
a

p F21
F11

U1ð1Þ
�

þ F22
F12

U2ð1Þ
�

ðC:3Þ
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The functions U1ðnÞ and U2ðnÞ in Eqs. (C.2) and (C.3) are the solutions of the following simultaneous

Fredholm integral equations of the second kind:
U1ðnÞ þ U2ðnÞ þ
Z 1

0

U1ðgÞK11ðn; gÞdgþ
Z 1

0

U2ðgÞK12ðn; gÞdg ¼ n

F21
F11

U1ðnÞ þ
F22
F12

U2ðnÞ þ
Z 1

0

U1ðgÞK21ðn; gÞdgþ
Z 1

0

U2ðgÞK22ðn; gÞdg ¼ D�

r1
n

ðC:4Þ
where
F11 ¼
X3
j¼1

gjdj; F12 ¼
X3
j¼1

gjlj; F21 ¼
X3
j¼1

hjdj; F22 ¼
X3
j¼1

hjlj ðC:5Þ

l1 ¼ c1ðf2 � f3Þ; l2 ¼ c2ðf3 � f1Þ; l3 ¼ c3ðf1 � f2Þ ðC:6Þ

D� ¼ c2r1 þ e3E1 ðC:7Þ

c2 ¼
2e31ðc13 � kÞ � e33ðc11 þ c12 � 2k� 2lÞ
2c13ðc13 � kÞ � c33ðc11 þ c12 � 2k� 2lÞ

e3 ¼
2e31½ðc13 � kÞe33 � c33e31� þ e33½2c13e31 � e33ðc11 þ c12 � 2k� 2lÞ�

2c13ðc13 � kÞ � c33ðc11 þ c12 � 2k� 2lÞ þ �33

ðC:8Þ
The kernels Kijðn; gÞ ði; j ¼ 1; 2Þ are given by
K11ðn; gÞ ¼
4

p2F

X3
j¼1

gjc2j

Z 1

0

Ejða; gÞ sinhðc0janÞda

K12ðn; gÞ ¼
4

p2F

X3
j¼1

gjc2j

Z 1

0

E0
jða; gÞ sinhðc0janÞda

K21ðn; gÞ ¼
4

p2F

X3
j¼1

hjc2j

Z 1

0

Ejða; gÞ sinhðc0janÞda

K22ðn; gÞ ¼
4

p2F

X3
j¼1

hjc2j

Z 1

0

E0
jða; gÞ sinhðc0janÞda

ðC:9Þ
where
E0
jða; gÞ ¼

X5
i¼1

D0
iða; gÞQi;jðaÞ

jCj ðj ¼ 1; 2; 3Þ ðC:10Þ
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D0
1ða; gÞ ¼

X3
j¼1

ajlj
cj

K1ðc0jab=aÞ sinhðc0jagÞ

D0
2ða; gÞ ¼

X3
j¼1

lj
c2j

"
� mja

cj
K0ðc0jab=aÞ þ ðc12 � c11Þ

aja
b

K0ðc0jab=aÞ
#
sinhðc0jagÞ

D0
3ða; gÞ ¼

X3
j¼1

lj
cj
K0ðc0jab=aÞ sinhðc0jagÞ

D0
4ða; gÞ ¼

X3
j¼1

fjlj
c3j

K1ðc0jab=aÞ sinhðc0jagÞ

D0
5ða; gÞ ¼

X3
j¼1

njlj
cj

K1ðc0jab=aÞ sinhðc0jagÞ

ðC:11Þ
The total potential energy release rate G and mechanical strain energy release rate GM for the imper-
meable crack model are
G ¼ � p

2ðF11F22 � F12F21Þ2
ðF11F22

"(
� F12F21Þ

X3
j¼1

sj
cj
�
X3
j¼1

hjsj
X3
j¼1

bjsj
cj

#
k21 þ

X3
j¼1

hjtj
X3
j¼1

bjsj
cj

"

þ
X3
j¼1

hjsj
X3
j¼1

bjtj
cj

� ðF11F22 � F12F21Þ
X3
j¼1

tj
cj

#
k1kD �

X3
j¼1

hjtj
X3
j¼1

bjtj
cj

 !
k2D

)
ðC:12Þ

GM ¼ � p
2ðF11F22 � F12F21Þ

X3
j¼1

sj
cj

 !
k21

"
�

X3
j¼1

tj
cj

 !
k1kD

#
ðC:13Þ
where
sj ¼ djF22 � ljF21
tj ¼ djF12 � ljF11 ðj ¼ 1; 2; 3Þ

ðC:14Þ
The energy density factor is expressible in the form
S ¼ SM þ SE ðC:15Þ
where
SM ¼ 1

8ðF11F22 � F12F21Þ2
ðb1k

2
1 þ b2k1kD þ b3k

2
DÞ ðC:16Þ

SE ¼ 1

8ðF11F22 � F12F21Þ2
ðb4k

2
1 þ b5k1kD þ b6k

2
DÞ ðC:17Þ



S. Lin et al. / International Journal of Solids and Structures 40 (2003) 5157–5174 5173
and
b1 ¼
X3
j¼1

mjsjRc
jðh1Þ

X3
j¼1

ajsjRc
jðh1Þ þ 2

X3
j¼1

fjsj
cj

Rs
jðh1Þ

X3
j¼1

sjðajc2j þ 1Þ
cj

Rs
jðh1Þ

�
X3
j¼1

gjsjRc
jðh1Þ

X3
j¼1

sjRc
jðh1Þ

b2 ¼ �
X3
j¼1

mjtjRc
jðh1Þ

X3
j¼1

ajsjRc
jðh1Þ � 2

X3
j¼1

fjtj
cj

Rs
jðh1Þ

X3
j¼1

sjðajc2j þ 1Þ
cj

Rs
jðh1Þ

þ
X3
j¼1

gjtjRc
jðh1Þ

X3
j¼1

sjRc
jðh1Þ �

X3
j¼1

mjsjRc
jðh1Þ

X3
j¼1

ajtjRc
jðh1Þ

� 2
X3
j¼1

fjsj
cj

Rs
jðh1Þ

X3
j¼1

tjðajc2j þ 1Þ
cj

Rs
jðh1Þ þ

X3
j¼1

gjsjRc
jðh1Þ

X3
j¼1

tjRc
jðh1Þ

b3 ¼
X3
j¼1

mjtjRc
jðh1Þ

X3
j¼1

ajtjRc
jðh1Þ þ 2

X3
j¼1

fjtj
cj

Rs
jðh1Þ

X3
j¼1

tjðajc2j þ 1Þ
cj

Rs
jðh1Þ

�
X3
j¼1

gjtjRc
jðh1Þ

X3
j¼1

tjRc
jðh1Þ

b4 ¼
X3
j¼1

njsj
cj

Rs
jðh1Þ

X3
j¼1

bjsj
cj

Rs
jðh1Þ �

X3
j¼1

hjsjRc
jðh1Þ

X3
j¼1

bjsjRc
jðh1Þ

b5 ¼ �
X3
j¼1

njtj
cj

Rs
jðh1Þ

X3
j¼1

bjsj
cj

Rs
jðh1Þ þ

X3
j¼1

hjtjRc
jðh1Þ

X3
j¼1

bjsjRc
jðh1Þ

�
X3
j¼1

njsj
cj

Rs
jðh1Þ

X3
j¼1

bjtj
cj

Rs
jðh1Þ þ

X3
j¼1

hjsjRc
jðh1Þ

X3
j¼1

bjtjRc
jðh1Þ

b6 ¼
X3
j¼1

njtj
cj

Rs
jðh1Þ

X3
j¼1

bjtj
cj

Rs
jðh1Þ �

X3
j¼1

hjtjRc
jðh1Þ

X3
j¼1

bjtjRc
jðh1Þ

ðC:18Þ
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