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Abstract

The electroelastic response of a penny-shaped crack in a piezoelectric cylindrical fiber embedded in an elastic matrix
is investigated in this study. Fourier and Hankel transforms are used to reduce the problem to the solution of a pair of
dual integral equations. They are then reduced to a Fredholm integral equation of the second kind. Numerical values on
the stress intensity factor, energy release rate and energy density factor for piezoelectric composites are obtained to
show the influence of applied electric fields.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Mechanical reliability and durability of polymer/piezoelectric ceramic composites with 1-3 connectivity
are important considerations in the design of hydrophones and transducers. In recent years, significant
efforts had been made to the study of electroelastic fields concentrations and fracture behavior of 1-3 pi-
ezoelectric composites (Shindo et al., 2002a,b). In the theoretical studies of the piezoelectric crack problems,
the electrical boundary condition imposed across the crack surface remains a debating issue. There are two
commonly used electrical boundary conditions. Pak (1990) has assumed crack face to be free of surface
charge (the so-called condition of impermeability or impermeable condition) while Shindo et al. (1990,
1997) have discarded the impermeability approximation. Recently, Narita and Shindo (2001) obtained a
crack growth rate equation of a plane strain slit-like crack parallel to the edges of a narrow piezoelectric
ceramic body under Mode I loading. The results indicated that under applied uniform displacement,
positive electrical fields (electrical fields in poling direction) impede crack propagation while negative
electrical fields (electrical fields applied opposite to the poling direction) aid crack propagation. To test the
validity of such predictions, the single-edge precracked-beam tests and corresponding finite element ana-
lyses were performed on P-7 piezoelectric ceramics (Shindo et al., 2002c). For center-cracked piezoelectric
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specimens under three-point bending condition, total potential and mechanical strain energy release rates
based on the exact boundary condition for applied displacement are in agreement with the experimental
results. However, the total and mechanical energy release rates based on the impermeable assumption are
not in agreement with the experimental results. In the case of applied load, the total and mechanical energy
release rates based on the exact crack model are also in agreement with the experimental results of Park and
Sun (1995). Their experimental results showed that positive electric fields decreased fracture load, whereas
negative electric fields increased it. The fracture mechanism is due to the inducement of stress resulting from
mechanical deformation by the applied electric field. Based on the total and mechanical energy release rates
for the impermeable model under applied force, we cannot explain the test results. To estimate the electric
fracture toughness, indentation fracture tests were also made on P-7 under combined mechanical and
electrical loads (Shindo et al., 2001). The exact crack model provided predictions of fracture properties due
to electromechanical loading and better qualitative agreement with the experimental results. Schneider and
Heyer (1999) also used the indentation method to determine the crack growth of ferroelectric barium ti-
tanate and showed that it is physically questionable to apply the impermeable crack model. In recent works,
the energy density fracture criterion (Sih, 1991) was applied to determine the piezoelectric crack growth
segments for conditions of positive, negative and zero electric field based on the impermeable assumption
(Sih and Zuo, 2000).

This paper considers the electroelastic problem of a penny-shaped crack in a piezoelectric circular cyl-
inder embedded in an elastic matrix under Mode I loading. The method of solution involves the use of
Fourier and Hankel transforms to reduce the mixed boundary value problem to a pair of dual integral
equations. The solution is then given in terms of a Fredholm integral equation of the second kind. The
stress intensity factor, energy release rate and energy density factor are determined and numerical results
are shown graphically to demonstrate the influence of applied electric fields.

2. Problem statement and basic equations

A piezoelectric fiber of infinite length with radius b in Fig. 1 is embedded in an elastic matrix having
Young’s modulus £ and Poisson’s ratio v. With the reference to a cylindrical coordinate system (r, 6, z), the
longitudinal axis of the fiber coincides with the z-axis while the center of a penny-shaped crack of radius a is
directed through the z-axis. The piezoelectric composite is subjected to an external strain in the z-direction,
and the fiber poled in the z-direction is subjected to the normal stress, 6., = g, and electric field, E, = E.
Quantities in the neighboring elastic matrix will subsequently be designated by the superscript ‘E’.

The constitutive equations can be written as

U,
Oy = Cl11 Uy +c12 7 + Ci13Uz; — e3lEz

U,
Ggp = Cialy, + Cij - + ci3uz — ez E;

(1)
uy
Oz = Cisthry + €137+ Ca3thzz — ek,
Oz = C44(”r‘z + uzA,r) - elSEr
Dr = elS(”l’,z + uz,r) + 6llE‘r
(2)

U,
Dz = €31 (unr + 7) + e33”z,z + 633E‘z
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Fig. 1. Geometry of a piezoelectric cylindrical fiber with a penny-shaped crack embedded in a matrix.

uE
o, = (2u+ A)ul, + /1< L+ uZEZ>

7

E
oy = M, + (2u+ 1) uTV + Jul, 3)

E
ot = ),(ufr —i—uT’) + 2u+ A)ul,

ot = u(uy, + uf,)

In Egs. (1)~(3), 6, 000, 0=, 0z, 65, 0y, o, o& are the components of stress tensor; D, and D, the com-

ponents of electric displacement vector; u,, u., u* and u* the components of displacement vectors; E, and E,
the components of electric field vector; ¢y, c12, 13, ¢33, €44 the elastic moduli measured in a constant electric
field; €)1, €33 the dielectric permittivities measured at constant strain; e;s, e31, e33 the piezoelectric constants;
2=2Gv/(1 —2v) and p = G the Lamé constants of the elastic matrix; and G = E/2(1 + v) the modulus of
rigidity. A comma implies partial differentiation with respect to the coordinates. The electric field com-
ponents may be written in terms of an electric potential ¢(r,z) by

E, = _¢,r7 E. = _d),z (4)

The governing equations are obtained as

Up, Uy
ci1 (ur,rr + P ﬁ) + Caatty oo + (c13 + Caa)ttz + (€31 + 615)<,l'>,rz =0
5)
Uz Uz, r (
(C]3 + C44) (ur«,rz + T) + C33Uz 2z + C44 (uz,rr + 7) + e1s <¢,rr + d)T) + e33¢,zz =0
Uy » Uz, d).r
(631 + 815) (ur,rz + 7) + €15 (uz,r'r + T) + €33U; -z — €]] <¢<rr + T> - E33(11),22 =0 (6)
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uf E
(et ) (a2 = ) bk (ot A, =0
N ; (7)
u u
2+ 2 ) o o i (1, ) =0
In a vacuum, the constitutive equations (2) and the governing equation (6) become
Dr = EoEr, Dz = GQEZ (8)
o, _
¢,rr + T + d),zz =0 (9)

where ¢ is the electric permittivity of the vacuum.
Referring to the semi-infinite region z > 0, 0 <r < 0o, 0 < 0 < 27%, the boundary conditions can be ex-
pressed in the form

o,(r,0)=0 (0<r<b)

10
et (r,0) =0 (h<r<o) (10)
0=(r,0) =0 (0<r<a)
u(r,0) =0 (a<r<b an
u; (r,0) =0 (b<r<oo)
E.(r,0) =E(r,0) (0<r<a) )
P(r,0) =0 (a<r<b)
D.(r,0) = D(r,0) (0<r < a) 13)
u:(b,z) = u; (b,2) (14)
u.(b,z) = ut(b,2) (15)
0, (b,2) = 0,.(b,z) (16)
0,:(b,z) = 0,.(b,z) (17)
P2 =0 (18)
0:(r,z) = 0w, E.(r,2)=E. (0<r<b, z— o) (19)
O-fz(raz) :O'EC (b<7’< 00, z — oo)
where
O-]ozc =C(10x t+ (6’161 — ez)EOC
Qe+ AR+ A) — e —en] =244 —ci3)
e[2(u+2) —en — en] = 2ei3(4 —c3)
e = e + 2c13e3 (20)
1 : 2p+2) —en—cn
21631
e =

S 2+ ) —cn —cn
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and the superscript ‘¢’ stands for the electric field quantity in the void inside the crack. The far-field normal
stress g, is expressed as

Oo = 00 — €2FE (21)
Note that g is a uniform normal stress for a closed-circuit condition with the potential forced to remain
zero (grounded).

3. Solution procedure

Assume that the solutions u,, u., ¢, u* and uF are of the form

u(r,z) = % Z /Ox[a‘,-A_,«(oc) exp(—y;02)1 (o) + @B () 1y (o) cos(oz)] do + anr

‘ (22)
u,(r,z) = % ,231: /0 [%Aj(oc) exp( — yjocz)Jo(ocr) + %B‘/(oc)lo(y;ar) sin(oz) |do + bz
o(r,z) = 2 i /OO - QA-((X) exp( — y,uz)Jo(or) + —;Bl(oc)lo(y’ar) sin(az) | da — cooz (23)
’ T = Jo Y / / V} ! / *

ub(r,z) = % /Ooo{—Kl (0r)By(a) + [4(1 — v)Ky (o) + oKy (or)|Bs (o) } cos(oz) dor + agob + do (r — b)
2 [o¢]

ub(r,z) = - / [—Ko(or)By(or) + arKy (ar)Bs(a)] sin(oz) do + ez (24)
0

where 4;(a) (j=1,2,3) and B;(a) (j = 1,...,5) are the unknowns to be solved, Jy( ) and J;( ) are the zero
and first order Bessel functions of the first kind, I,( ) and I;( ) are the zero and first order modified Bessel
functions of the first kind, and Ky( ), K;( ) and K,( ) are the zero, first and second order modified Bessel
functions of the second kind, respectively. The real constants a.,, by, Cx, ds and ey, will be determined
from the far-field loading conditions, and 3, a;, b;, 77, @}, b, (j = 1,2,3) are given in Appendix A. Ap-
plication of the Fourier transform to Eq. (9) yields

¢ = % / " C(a) sinh(a)o(ar)da (0<x < a) (25)

where C(«) is also unknown.
By applying the far-field loading conditions, the constants a.., b, Co, ds and e,, are evaluated as

(c13 = A)0 + [(c13 — A)ess — cxze3|Ex

oo = doo = .
2ci3(c13 — A) —exslen + e — 24— 2p)
b — B —(e11 4 120 — 24 = 2)0 + [2c13€31 — e33(ciy + c12 — 22 — 2p)]|E (26)
oo T eOO - "
2013(013 — j.) — C33(C]1 “+cpp — 24 — 2,[1)
Coo = Eo

The boundary conditions of Eqs. (10) and (12) lead to the following relations between unknown functions:

D) + L o) + L sy = 0 (27)

ba V2 V3
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b b b
A1 (@) + = As() + = A3(2) = 0 (28)
"1 72 73
where
fi= c44(ajyjz. +1)—esh; (j=1,2,3) (29)

Application of the mixed boundary conditions in Eqgs. (11) gives rise to a pair of dual integral equations:

/ aFD(or)Jo (o) dor — Z / g,y B (a)lo (Y or) do = o (0<r<a)
) ~ Jy 7. J B

(30)
/ D(a)Jo(or)da =0 (a<r<b)
0
where
Do) = Ald(loc) _ Azd(zoc) _ Aii(:c) (31)
3

Z g (32)

dy = y,(bofs — b3fa), do=72(bsfi —bif3), ds=7y3(bifa —baoft) (33)

g =cna;—cntenb, (j=1,2,3) (34)

The solution of a pair of dual integral equations (30) may be obtained by using a new function ¢(&) and the
result is

D) = -7 a /0 (&) sin(an) dé (35)

The function @(¢&) is governed by the following Fredholm integral equation of the second kind:

o0 + / S(K(En)dy = ¢ (36)

The kernel function K(&,7) is

En n2F Zg/yj / (o, ) sinh(y2&) dox (37)

where E;(a,n) is given in Appendix B.
The stress intensity factor k; for the exact crack model is obtained as

k= lim {2(r — a)}o..(r,0) = %%\/arp(l) (38)

The electric displacement intensity factor kp is also given by

ko = lim {2(r — a)}'*D.(r,0) ( Zhd)kl (39)
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where
hj = €314, + €33 — E33bj (40)

The stress and electric displacement intensity factors for the impermeable crack model are discussed in
Appendix C.

By using the concept of crack closure energy and the asymptotic behavior of stresses, displacements,
electric displacement and electric potential near the crack border, the total potential energy release rate G
may be expressed as

= lim RS / a{azz(rl)uZ(Aa —r) + o, (ru.(Aa — r) + D.(r1)d(Aa — ) }dry

Aa—0 Aa

] bd 2
- 2F2< Z Zh]djz )k (41)

J=1 J=1 j=1

where r; = {(r — a)* + zz}l/ ? and Aa is the assumed crack extension. The mechanical strain energy release

rate Gy includes only mechanical energy released as the crack extends and is given by

1 Aa - 3 dj ,
Gu = Allllr_r'l0 v / {o..(ru.(Aa — r) + a..(r1)u.(Aa — r)) }dry = — <ﬁ ; E)kl (42)

The total potential and mechanical strain energy release rates for the impermeable crack model are also
given in Appendix C.
The energy density is expressible in the form

1 1
dw = {5 (Gt + Oapbier + Oty + 0z6z) + 5 (DrEr + DZEZ)}dV (43)
and hence
dw
S=r— a7 = (am + ag )k (44)
where

_1 y c : c f// s 2 di( /V/‘i'l s
=3F Y mdiR5(0) Y aidiRs (6, +Z ~—R}(01) Z L R(0y)
J=1 J=1 =1 /j
3 3
=Y gdR(6)) Zd_/Rf(@l)} (45)
=1

3

3 3
nd; bid; ‘( .
. — 8F2{Z o0y 2o }:hdR 1)§ljb,d,1ej(01>} (46)
Vi =

J=1 J=1

and

12
R (0) (cos® 01 + 73 sin® 0,)"? 4 cos 0, /
A cos? 0 + y7 sin® 0,

(47)

12
R0 (cos® 0 + 73 sin® 0,)"% — cos 0, /
A cos? 0y + 77 sin® 0,

0, = tan™! ( z ) (48)

r—a

The energy density factor for the impermeable crack model is given in Appendix C.
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Rapid crack growth occurs when the minimum energy density factor Sy, reaches a critical value:

Smin = S¢ (49)
Each increment of stable crack growth ryy,72,...,7;,...,7c up to rapid crack propagation is determined
by the condition (Sih, 1991)

S S S; S

Sl_22 2 22 (50)

o e ry; Tlc

where 7| represents the last ligament of slow crack growth just prior to the onset of rapid fracture and S,
governs the onset of rapid crack propagation. The growth condition of Eq. (50) can be written as
Sie _ S _Sie (51)

ri—  riyo oo T+

where the subscripts —, 0, + denote, respectively, the situations for negative, zero and positive electric
fields.

4. Numerical results and discussion

The determination of the stress intensity factor, energy release rate and energy density factor for the
exact crack model requires the solution of the function of @(¢). The solution of the Fredholm integral
equation of the second kind (36) governing @(¢) has been computed numerically by the use of Gaussian
quadrature formulas. Once this is done, &, G, Gy and S can be found from Egs. (38), (41), (42) and (44).
The simultaneous Fredholm integral equations of the second kind (C.4) were also solved numerically to
yield the values of the functions @;(1) and ®,(1). These values were then inserted into Eqs. (C.2) and (C.3)
to determine the stress and electric displacement intensity factors for the impermeable crack model. The
energy release rate and energy density factor were calculated by using Egs. (C.12), (C.13) and (C.15)—
(C.17). The piezoelectric cylinder is made of commercially available piezoceramic P-7, and the elastic matrix
is epoxy. The material properties of P-7 are listed in Table 1 (Shindo et al., 2000). The Young’s modulus
and Poisson’s ratio of epoxy are taken to be £ = 3.38 GPa and v = 0.215.

Fig. 2 shows the normalized stress intensity factor mk;/2c6oa'/?> of the exact and impermeable (approx-
imate) crack models as a function of the crack-radius to cylinder-radius ratio a/b for various values of the
normalized electric field e E,,/cy. The data are normalized by the stress intensity factor 2¢ya'/?/n of an
infinite P-7 piezoelectric ceramic for E,, = 0 V/m corresponding to the applied uniform displacement. For
comparison, the normalized stress intensity factor mk;/2a9a'/? of a free surface finite P-7 piezoceramic
cylinder for the exact crack model under £, = 0 V/m is also included in the figure. An increase of a/b
causes an increase in the stress intensity factor. The stress intensity factor of the P-7-epoxy composite for
E., = 0 V/m remains smaller than that of the P-7 cylinder. When an electric field is applied, nk,/2c0a'/?
increases or decreases depending on the direction of the electric field. The stress intensity factor
normalized by 2¢..a'/?/n corresponding to the applied uniform stress for the exact and impermeable

Table 1

Material properties of a piezoelectric ceramic P-7
Elastic stiffnesses (x10'° N/m?) Piezoelectric coefficients (C/m?) Dielectric constants (x10~' C/V m)
C1 €33 Ca4 C13 €3] €33 €1s €11 €33

P-7 13.0 11.9 2.5 8.3 -10.3 14.7 13.5 171.0 186.0
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Fig. 2. Stress intensity factor versus crack-radius to cylinder-radius ratio.

crack models is independent of the normalized electric field e, E. /o, and agrees with the nk, /20¢a'/? for
E, =0 V/m.

Fig. 3 shows the dependence of the total potential energy release rate G for the exact crack model under
applied displacement on e,E, /g, for a/b = 0.7, where the result has been normalized by the energy release
rate Gy of the infinite P-7 for £, = 0 V/m. For comparison, the mechanical strain energy release rate Gy for
the exact crack model, total potential energy release rate G' and mechanical strain energy release rate G},

I LA | B B B

L a/b=0.7
Applied displacement \
2 Exact model

Total G
— — — = Mechanical Gy

Impermeable model
————— Total G

0 L I‘\ L
-1 -0.5 0 0.5

elEm /G()

Fig. 3. Energy release rate versus electric field for applied displacement.
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for the impermeable crack model are also included in the figure. Comparing the results of G and Gy, little
difference is observed (solid and dashed lines approximately overlap). The total energy release rate for the
exact crack model is lower for positive electric fields and higher for negative electric fields. On the other
hand, when a positive electric field is larger, a negative total energy release rate is produced for the im-
permeable crack model (alternate long and short dashed line). It has been pointed out by at least 15 or more
researchers previously (e.g. McMeeking, 1999; Chen and Lynch, 1999; Sih, 2002). The parameter for the
impermeable crack model has questionable physical significance. Fig. 4 shows the energy density factor S;
(crack growth segment r;;) for the exact crack model for applied displacement under different e,E.. /gy,
a/b=0.7 and 0, = 0, where S; (1;) has been normalized by the energy density factor Sj (crack growth
segment r;o) of the infinite P-7. Also shown are data for the impermeable crack model. The presence of
positive electric field E,, leads to a decrease in the energy density factor (crack growth segment) for the
exact crack model. In contrast, the energy density factor (crack growth segment) increases as the electric
field E, increases in the negative direction. For the exact boundary condition, no substantial difference is
found in the effects of the electric fields on crack propagation based on the stress intensity factor, total
potential energy release rate, mechanical strain energy release rate and energy density factor. The energy
density factor for the impermeable crack model is higher for positive electric fields and lower for negative
electric fields. This is in contrast to the total potential and mechanical strain energy release rates for the
impermeable crack model. The presentation of data for the impermeable crack model causes confusion in
using the electrical boundary conditions on the crack face.

Fig. 5 displays the variation of G and Gy for the exact crack model and G' and G}, for the impermeable
crack model under applied uniform stress with various normalized electric field e E, /o, for a/b=0.7,
normalized by values of the infinite P-7 for £, = 0 V/m. The total potential and mechanical strain energy
release rates for the exact crack model are independent of the normalized electric field e E.. /o, (solid and
dashed lines overlap). In the impermeable case, as the magnitude of e;E, /o is increased from zero, the
total potential energy release rate G' can be made either to increase or to decrease depending on the di-
rections of E,. But, once maximum G' is reached, further increase in E,, will monotonically decrease G,

S; /'S0 (115 / 1150)

Applied displacement

Exact model Sj (r1;)

""""" Impermeable model SjI ( rllj)

0 S TR A T N S ST '
-0.5 0 0.5

G]Eoo/G()

Fig. 4. Energy density factor versus electric field for applied displacement.
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G /G,

/ a/b=0.7
2 L Applied stress
Exact model
- Total G
L/ — — = — Mechanical Gy |
/' Impermeable model
————— Total G'
---------- Mechanical GIM
1 PRI N T T SO S (T T T R S |

-0.5 0 0.5
¢iE. /0o

Fig. 5. Energy release rate versus electric field for applied stress.

which is inconsistent with the experimental findings. The normalized energy density factor (crack growth
segment) for the exact crack model versus e E,, /0., for a/b = 0.7 is presented in Fig. 6, along with the
results for the impermeable crack model normalized by the corresponding values of energy density factor
(crack growth segment) of the infinite P-7 for E,, = 0 V/m. The energy density factor (crack growth seg-
ment) for the exact crack model is also independent of e/E., /0. In contrast, the energy density factor

35—
5 Exact model S; (rjj) ]
foemeeeee Impermeable model Slj (rII DI
- Applied stress ]
- a/b=0.7 S
EELS 6,=0 E
= I S
~
€ :
=
A - ]
~ 25+ a
n L ]
2 -
L | L | L |
-0.4 -0.2 0
e]Eoo /Goo

Fig. 6. Energy density factor versus electric field for applied displacement.
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(crack growth segment) for the impermeable crack model increases or decreases depending on the mag-
nitude and direction of e¢|E,, /0. If the impermeable crack model is used, different criteria give different
results for the crack propagation in piezoelectric ceramics and composites.

5. Conclusions

The electroelastic problem of a penny-shaped crack in a piezoelectric cylindrical fiber embedded in an
elastic matrix has theoretically been analyzed. The results are expressed in terms of the stress intensity
factor, energy release rate and energy density factor. Fracture mechanics parameters such as stress intensity
factor, energy release rate and energy density factor increase and the effect of electrical loading becomes
significant as the cylinder-radius is decreased in comparison with the penny-shaped crack-radius. Fracture
mechanics parameters for the 1-3 piezoelectric composite are smaller than those for the piezoelectric cyl-
inder if the other parameters are held constant. The electrical loading dependence on the fracture mechanics
parameters is different for the two mechanical loading conditions (applied displacement and applied stress).
For the exact boundary condition, fracture mechanics parameters under uniform displacement are lower
for positive electric fields and higher for negative electric fields. For applied stress, fracture mechanics
parameters for the exact crack model are independent of the electric fields. No consensus is reached on the
fracture criteria for the impermeable crack model.
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Appendix A

77 (/= 1,2,3) in Egs. (22) and (23) are the roots of the following characteristic equation:
a0y’ + boy* + ¢y’ +dy = 0 (A.1)

where

ay = cas(cazess + 653)

by = —2cysese33 — 0116’33 — c33(cas€ry + cri€33) + exzlers + 044)2 + 2e33(c13 + caa)(e31 + er5)
— Ci4€33 —cys(es + 615)2

co = 2ci1ejses3 + C44€%5 + cii(essen + caaess) —enn(cis + C44)2 —2ey5(c13 + caa) (€31 + e15)
+ Ci4€11 + casles + 615)2

dy = —cy1(caserr + 6%5)

and, y}z, a;, b, a}, b} ( = 1,2,3) stand for the abbreviation

J

, 1
ol (A3)
J

~
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(et ers)(c337; — cas) — (c13 + caa) (e33y] — eis)

a, =
T (caay? — cn)(essy? —ers) + (13 + cas) (€31 + ers)7?

B (6447),2 —ci)a; + (c13 + ca)

b, =
es +eis
I 2
a4; = —4qy;
! —_ — .
b} b,

Appendix B

The functions E;(o, 1) (j = 1,2,3) in Eq. (37) are given by

Eon) =3 2% "AQ“’(“) (=1273)
C1 (O() 0172(06) C13 (OC) 0174(05) CI,S(OC)
1)  can(a) caza) cara(a) cas(a)
C= C3,1 (OC) C3<’2(OC) C33 (O() C3A4(a) C3,5(OC)
ca1(2) caa(o)  cq3(2) ca4() C4,5(0€)
Cs1 (OC) 0512((%) Cs53 (OC) 6‘5_’4(06) (3575(0(>

(
(
c3j(o) = —myyodo(y;ub/a) +§(012 —en)hi(Yob/a) (j=1,2,3)
(
(

(B.2)

(B.3)
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2a ob
c15(0) = —4(1 —v) {Ko(ab/a) +%K1 (ocb/a)} + ;Kl(ocb/a)
ab
02,5(‘0() = — ;Ko(ocb/a)
2 2
e35(0) = 2;% {(4 4y + b—>1<1 (ab/a) + (3 — 2v) %bzq (ab/a) (B.5)
ab
C45( ) = 2‘11 |:(2 2v)K1(otb/a) —+ — K()(Otb/a):|

ess(a) =0

3
a;d; , . ,
Di(om) =Y ~ - Ki(jab/a) sinh ;o)

=1

3
d; mjot o aa , . ,
Dy(o,m) = /*é —=Ko(yjb/a) 4 (c1a — cu)‘l’)Ko(ijxb/a)] sinh(yom)
=1 1J J
Ds(a,n) =Y V—’Ko(y.’iocb/a) sinh(y/a) (B.6)

j=1 1J

3
Jid; ,
Dy(a,1) = Z %Kl (vjb/a) sinh(y’on)
=1 1
3 nyd
Ds(o,n) = Z le (7;b/a) sinh(yon)
=1 Vj
m; = cpa; — ci3 + eyb;

: . (B.7)
n_j:els(ajyj+1)+€1lb/ (]: 17273)

and |C| is the determinant of the square matrix C and Q;;(«) are the cofactors of the elements ¢; (o).

Appendix C

The impermeable boundary condition becomes

D.(r,0)=0 (0<r<a)

$(r,0) =0 (a<r<b) (C.1)

The boundary condition of Eq. (10) leads to Eq. (27). Making use of mixed boundary conditions of Egs.
(11) and (C.1), two simultaneous dual integral equations are obtained.

The stress intensity factor &, and electric displacement intensity factor kp for the impermeable crack
model are obtained as

o :iamﬁ{qal(l) + (1)} (C2)

o= 2ova{ o) + 1 (1) (€3)

Fiy Fip
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The functions @;(¢) and ®,(¢) in Egs. (C.2) and (C.3) are the solutions of the following simultaneous

Fredholm integral equations of the second kind:

B1(2) + Bo(8) + / &, (K (&, ) di + / B(n)Ka(E,m)dn = &

F 3 F 1 3 1 *
2@+ 200+ [ nkaEn it [ iKalemdn =g
11 12 0 0 0o

where
3 3 3 3
Fo=Y gd, Fo=Y gl Fu=>» hd, Fn=> hl
j=1 j=1 J=1 J=1
llzyl(ﬁ_ﬁ)» lzzyz(ﬂ_fl)» l3:V3(,ﬂ‘ﬁ)
D" = 0, + e3E
o — 2e31(c13 — A) —ess(cn + cip — 24— 2p)
2 2013(6‘13 7}) 7C33(011 +C12 72/172/1)
- 2e3; [(013 - /1)633 - 033631] + €33 [2013631 - 633(011 +cpn—24— 2#)]
e3 = + €33

2c13(c13 — A) — eas(enn + 12 — 24— 2p)

The kernels K;;(&,n) (i,j = 1,2) are given by
Ku(&n) = —— ng/,/ (e, ) sinh(ya) dex
3 00
Kin(&n) Zg,yj/ (o, 1) sinh (7€) dar
Kn(Em) = o Zh 72 / (s, ) sinh (7€) da

K»n(&n) —F Zh/yj/ E (o, 1) sinh(y¢) da
where

i=1

(C.10)
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3
/ ajl; , . ,
D (o, n) = Z ;’Kl("/jfxb/a) sinh(y o)
j=1 J
3
l m;o. aa .
Diy(o, 1) = “/_12 - #Ko(y}ab/a) + (e — cn)fKo(y}sz/a) sinh(ya)
17 J

.
Il

Ko(y b /a) sinh(yon) (C.11)

T
S

2
—~
=

|
-
= |\N

3

, l

D, (a, 17)=ny—3 \(7job a) sinh (/o)
Jj=1 J
il

Di(oyn) = 3 K, (b ) sinh (o)
j=1 4J

The total potential energy release rate G and mechanical strain energy release rate Gy for the imper-
meable crack model are

3 3 ;
i3 S bis; S
G=- (FIIFZZ_FIZFZI) L= hs; kg + hit; Y
: > bt 4 - bit; \ >
I ) SRS LA [V b 3wl I ci
= = Vi =V =1 FE
s S 3 t;
Gy = — k- L ki C.13
M 2(FnFy — FaFy) (; Vj) 1 (12_1: j) 1 D‘| ( )
where

s;=diFyn — [;Fy

4 =dF, - LR (j=1,2,3) (C.14)
The energy density factor is expressible in the form
S =St S (C.15)
where
e 8(Fiifx 11[7121721)2 (B + Pokako + k) (C.16)
Se = : 7 (Boki + Bskiko + Bkp) (C.17)

8(Fl1Fn — FioFy)
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and

3

3 3 3
c c iSi o Sj ay N
Dm0 e 0) +23- Ba00 3 M Doy
j=1 j=1 = i J=1
3 3
— D gsR(01) Y 5ROy
=1 =1

3 . Jiti s : Sj(“j’/f +1)
B = — S mu R0 Za,S,R (0) - Z S0 Y LU o)
Jj=1 /

B

j=1 y/
3 3
+ > gitiRs(0r) Z s;iR3(0 Z msiR(01) Y ait;R5(0))
J=1 J=1 J=1
- f/'Si s - tf a/y/ s : - c
=2 R 0) Y Rj(91)+2gjsj <(01) > tiRS(61)
=V j=1 J=1 j=1
3 3 3 3 2
t: ti(ayr+1)
Bo=> mtRE(0) Za,.t,.R;<91> +23 Do) S0 LY D ey
= =1 F= = Vi
3 3
- ngt/R;(gl) Z t/R,C(Hl)
Jj=1 Jj=1
3 nss 3 bs 3 3
Bi=>_ L Rs(0 )D 0 EIR(O) =Y hysiRE(01) > bsiRS(01)
=7 = =1 =
3 nits 3 b 3 3
Bs ==Y LR(01)> IR0 + > htiR(01) Y bysiRS(01)
= Vi =V = =1
3 ngs, b it 3
= ER(0)Y D TIR6)) +Zhs,Rc QI)me(e)
j=1 Vi Jj=1 1 Jj=1
3 3 bt 3 3
Bs = Z ’RS(H )D IR O) = Y htuR(00) > bitiRS(6))
=V = Y = =
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